






COMPOSITE LINER DESIGN TO MAXIMIZE THE SHOCK
PRESSURE BEYOND MEGABARS

Huan Lee
Los Alamos  National Laboratory
Los Alamos,  New Mexico, USA

Among the solid liners made of a single material which are imploded onto a target under the
same dm’ving  condition, the aluminum liner  produces the highest shock pressure. We propose
the composite liner  design which can increase the shock pressure several  times over the the
best performance obtainable from an aluminum liner. We have also developed a general
formulation to optimize the composite liner design for any driving current, and derived a
set of very useful scaling relations. Finally, we present some 1-D simulations of the optima!
composite liners  to be fielded at Pegasus and Procyon in the upcoming megabar experiments.

I. Introduction

Using pulsed power to implode the liner onto a
target is a convenient way to produce high shock
pressure. Two years ago, a solid aluminum liner
which could produce shock pressures in the
hundreds of kbar regime was designed [l] and
fielded [2]  at the LANL Pegasus facility. This liner
design has since been used successfully for a variety
of application experiments. Hecently,  there have
been considerable experimental interests to
produce shock pressures in the megabar regime and
more importantly, to ascertain what is the practical
pressure Iimit attainable for a given pulsed power.
It will be made clear later that, among the liners
made of a single material (for convenience called
pure liners hereafter), the aluminum one is
practically the best to produce the highest shock
pressure. But if we scale up the solid aluminum
liner design to the maximum driving current at
Pegasus, the highest pressure we can get is just
around 2 Mbar.

In this paper we propose a composite liner
design which can increase the shock pressure
several times over the best performance of the
aluminum liner. The composite liner is made of
aluminum on the outside and platinum inside. We
obtained this particular combination through a
systematic study of the shock pressure behavior
inferred from the Hugoniots, and a general analysis
of the Joule heating limitation on liner materials.
We have also developed a general formulation to
optimize the composite liner design for any given
driving current. Using the thin-liner implosion
equation, with the driving current decoupled from
the liner motion, we have derived a set of very
useful scaling relations for the optimal liner

parameters and performance. These relations
provide us a quick benchmark estimate on the
maximum pressure attainable from any scalable
driving current. For example, we can scale our
results obtained for Pegasus to the Atlas parameter
regime, since the driving currents for both are
approximately sinusoidal.

In the next section we will present the liner
implosion equation to lay the groundwork for liner
design. We next discuss the general behavior of the
shock pressure through the Hugoniots in Sect. III.
We establish a shortcut for searching the best
colliding materials which maximize the shock
pressure. In Sect. IV we give a detailed discussion
on the Joule heating, which sets an ultimate limit
on the liner velocity. The physical considerations
leading to the composite liner and general
procedure to optimize the liner parameters are
given in Sect. V, followed by the derivation of the
scaling relations in Sect. VI. Finally, in Sect. VII
we discuss the optimal composite liners to be
fielded in the upcoming megabar liner experiments
at both Pegasus and Procyon, and we present some
1-D simulation results.

II. Implosion Equation for Thin Liner

The liner implosion equation is rather
complicated for the following two reasons: First,
the driving current is not independent of the liner
motion. This means that the equation of motion
must be coupled to the circuit equation [xx] in a
more refined treatment. Second, the liner thickness
is time-dependent due to radial convergence, which
complicates the force distribution. Since we only
use the implosion equation to optimize the liner
design, it is not crucial for the former to be exact.



Rather, we will take advantage of any good
approximation which helps to simplify the
implosion equation and render the scaling possible.
The thin-liner approximation will be assumed in
this paper; it is justified if the thickness of the liner
is much smaller than the radius.

Next we note that the liner radius affects the
driving current only through a logarithmic term in
the inductance, so the effect is negligible until the
liner radius T becomes much smaller than its initial
value ~0.  In the region where P < rs, the duration
is so short that the liner velocity is affected only
slightly by the error in current. The above
reasoning justifies that we can decouple the driving
current from the liner motion. This excellent
approximation not only simplifies greatly the
implosion equation but also makes the scaling of
the optimal liner parameters possible. Using the
above approximations, the liner implosion equation
is given by

with the initial conditions r(0)  = TO and i(0) = 0,
where 1 is the length: I(t), the driving current;
r(t),  the radius; and m,  the mass of the liner.

A class of currents is said to be scalable to one
another if we can represent them by a single
function as I,F(wt)  using two parameters Ip and
w. The current wave forms we usually see in many
pulsed powers are approximately sinusoidal or like
a step-function, each type forms a scalable class.
Later when we look for possible scaling relations of
the optimal liner parameters and performance for
scalable driving currents, it is useful to express the
implosion equations for the whole class in terms of
the scaled distance traveled by the liner,
z s 1 - T/TO,  and scaled time r E wt. The resulting
implosion equation,

. . aF2(7)
z=(l-t) (2)

now has an invariant set of initial conditions
z(0) = i(O) = 0, where the dot stands for d/d7  and

Let T,  be the scaled collision time, then the
collision velocity is given by

VC = rowi( (4)

III. Behavior of Shock Pressures
Inferred from Hugoniots

When the liner collides with the target at a
velocity wC,  the shock pressure can be solved from

the Hugoniots for the liner (labeled by a)

and target (labeled by t)

p&J, - ?J) = P&c  - +t + S*(Vc  - v)] C-9

by eliminating the particle velocity v, where p is
the density, and c and s are material constants that
relate the shock velocity to the particle velocity.
From the above equations we see that higher
collision velocity vC  and material densities will give
rise to higher shock pressure, but the material with
higher values in c and s also helps. While the
above equations provide us a precise guideline to
find the best liner and target materials that will
achieve the highest colbsion  shock under a given
imploding condition, the process to examine all
material pairs will be extremely time consuming.
Fortunately we can take a shortcut by proving the
following theorem: For any collision velocity, let
PAB be the shock pressure generated from a
collision between two materials A and B, its value
is bounded in between PAA and PBB.  We can
prove this statement as follows: First, notice that
the Hugoniots are parabolic functions of V. In the
physical region 0 5 v < vC, the liner Hugoniot
increases while the target Hugoniot decreases with
increasing v. Second, for the collision between
identical material, the two Hugoniots always
intersect at v = 42 due to their reflection
symmetry at the point, so we have the exact
solution

P = ;pv42c + sv,). (7)

Without loss of generality, we assume PAA > PBB
and solve for PAB at the intersection of the liner
Hugoniot A and target Hugoniot B. Now PAA and
PAB lie on the liner Hugoniot A which increases
with v, and PBB and PAB lie on the target
Hugoniot B which increases with v. It follows that
PAB can only occur in the region v < 42 and
therefore

PAA  > PAB  > PBB. (8)

Using the above rigorous result we can simplify our
task considerably in searching for the right
material to maximize the shock pressure. Instead
of searching for the maximum of all PAB,  we can
just look for the maximum of PAA,  provided that
the highest attainable v,  is independent of the liner
material. We will show later that the last condition
is indeed valid for the composite liner.

Even though the inequalities in Eq.(8) are valid
for any v,,  Eq.(7) gives no assurance that the same



material always maximizes the pressure for all
values of w,.  But for multi-megabar pressures or
higher, this is indeed the case. This follows from
the fact that, for a wide variety of materials [4], c is
around a few mm/ps and 1.2 < s < 2. At high
megabar pressures, V,  is large enough so that the
term sv, dominates over 2c in Eq.(7) and
consequently we have

1
P M pml,2.

This ensures that P is the maximum for the
material with the highest value in ps at any v,.  In
the same approximation, the shock pressure
between two different materials behaves like

PAB =
v,”

[(SA~A)-~/~ + (SBPB)-~/~]~
(10)

IV. Joule Heating Limitation on Liner

The current passing through the liner has to
diffuse into its interior from the outer surface, so
calculating the resistive heating of the liner is quite
complicated unless the diffusion time is faster than
the implosion time. In general we do not expect
the temperature distribution across the liner to be
uniform, but rather to increase monotonically
toward outside. To simplify the formulation, let us
consider a pure liner and assume that the
temperature is uniformly distributed. Since
radiation loss is negligible, the time dependence of
the liner temperature is given by the energy
balance equation

R(t)12(t)dt  = mc(T)dT, (11)

where c is the specific heat of the liner material
and R the resistance. In term of the resistivity 7
and density p,  we can integrate the above as

where TO  is the initial temperature. Notice that the
right hand side is only a state function of the liner
material. The left hand side is proportional to the
electrical action integral defined as

Q(T(t)) = -&I’ ~2(+% (13)

where A is the liner cross section. The electrical
action for any conductor can be measured by
passing a current through a thin sample wire.
Setting a limit on the action by requiring

T(&) = T,,  we constrain the liner mass to be a
function of the collision time t,  as

[2 to
zJ P(t)&  = !im.

0 P2
(14)

For pure liners, a reasonable limit on T, is the
melting point T,, since the solid phase maintains a
sharp shock front. The relation derived in Eq.(14)
is still useful even when we deal with the realistic
situations in which the temperature distribution is
not uniform. In this case we should set the Iimit on
the temperature of the inside liner surface, denoted
by T(t), which is the coolest at any time since the
current has to diffuse radially inward. It is easy to
see that we can still write

1 tz o 12(qdt = P(T(Q, m>,J (15)
except that /!I  now has a weak dependence on m.
Once we set T to a limit T, at t = t,, /3(Tc, m) can
be determined by using the 1-D MHD code to
compute the left hand side of Eq.(15). Later when
we apply the above relation to optimize the liner
mass, we only need to vary m in a narrow range
around the optimal solution. We can therefore
represent p(T,,  m) as a constant plus a small linear
term in m and determine it by just two code
simulations.

Among all metals, empirically aluminum has
the highest value (only copper is a close second) in
the ratio Q(Tm)/p, where Q(Tm) is the action to
the melting point. In terms of Q(Tm)/p2, the
aluminum  is ahead of other heavier metals even
more by an extra density factor. Using Eq.(14) the
same can be said about the current integral on the
left-hand side. We therefore conclude that the
aluminum liner can be driven with a longer t,,
before reaching the melting point, than any other
pure liner (of higher density) having the same mass
m and length e.  But longer imploding time before
melt implies higher attainable velocity since all
these liners are governed by the same implosion
equation. ******  Using Eq.(lO), we see that this
l/p  advantage in attainable velocity for aluminum
over materials of higher density is sufficient to
ensure that the aluminum liner will also generate
the highest shock pressure on any chosen target.

V. Composite Liner and Optimization

With the physical insights gained from our
discussions on shock Hugoniots and Joule heating,
the composite liner seems to be an excellent idea to
improve the attainable shock pressure substantially
over the pure liners. Clearly we still want to use



aluminum on the outside for carrying most of the
driving current to retain its highest attainable
velocity. For the inner layer we look for a material
with high value in ps to enhance the shock
pressure, subject to some other criteria discussed
below.

We find that platinum is the best impacting
material for the composite liner, not just for its
high density but also for its high melting point and
electrical resistivity. Baaed on these criteria, other
materials such as tungsten are equally satisfactory;
but the fact that platinum can be electroplated is a
big plus for fabrication. The Joule heating in the
platinum layer is reduced dramatically since the
current has to diffuse in through the aluminum.
The shunt resistance of the platinum layer is two
orders of magnitude higher than that of the
aluminum, owing to a much higher resistivity and
smaller cross section. This factor also helps to
reduce the Joule heating in Pt after the current is
diffused in.

The high melting point is an extra advantage
since we can now drive the Al layer beyond its
melting point while still keeping the Pt layer solid.
Consequently, the composite liner can take
considerably more Joule heating than a pure
aluminum one with the same mass, and thereby
achieving a corresponding higher velocity. How
much we can push this advantage depends on the
ability of the solid Pt layer to withstand the
magnetically driven Rayleigh-Taylor instabilities in
the melted Al layer, No definitive answer has been
known so far from the Z-D MHD simulations
Hopefully, we will get some valuable clue from the
upcoming megabar liner experiment at Pegasus.

For the composite liner, clearly the Joule
heating constraint should be applied to the
aluminum layer. In applying Eq.(I5),  therefore, m
is replaced by the aluminum mass mA[ and T, is
the limiting temperature set on its inner surface.
The platinum mass mpt  should be kept as low as
practical so that it will not reduce the liner velocity
significantly. In the following, mpt  is a specified
quantity.

To optimize the liner design means to find the
liner mass and radius which maximize the shock
pressure at a given target radius re,  which is
usually determined by the experimental
requirement or diagnostic limitation. For a
step-function current, the optimization can be
carried out analytically using a good
approximation. Due to limitation of space, this
result will be presented elsewhere. For a general
current wave form, we optimize the liner
parameters numerically as follows: Taking the liner

mass m as the free parameter, we use Mathematics
to solve Eq.(l) iteratively to find the correct initial
radius rg(m) such that the solution for r(t) satisfies
P(&) = P,,  where t,(m) is given by the Joule
heating constraint Eq.(15). The optimal mass is
then the one which maximizes the collision velocity
ve(m). The result is then used in the 1-D MHD
code to compute the more accurate liner motion
and detailed shock pressure history. In spite of the
thin-liner approximation and using a
motion-independent current in our formulation, the
code simulations (with coupled circuit model) have
demonstrated that we hardly need to refine the
optimal liner parameters.

VI. Scaling Relations for Optimal
Liners

We now proceed to derive a set of very useful
scaling relations for the optimal liner parameters
and performance. While these relations are derived
under some idealized scaling conditions, they
nevertheless provide us a valuable benchmark to
make a good estimate on the maximum pressure
achievable by an unexplored pulsed power regime
that is usually approximately scalable to a known
one.

It is important to realize that the liners
optimized by the procedured  as described in Sect.
V do not scale in a simple way even though the
driving currents are exactly scalable. For one thing,
in realistic design the target radius re is usually
determined by experiment requirement so the ratio
rG/rs  will not stay the same from one driving
condition to the other. Furthermore, the
optimization requirement also complicates the
scaling. Therefore, some idealized conditions are
necessary for us to deduce a set of simplified but
adequate scaling relations. To this end, we have to
assume first that the implosion distance (~0  - re)
scales like the optimal liner radius, TO.  In terms of
the scaled distance introduced in Eq.(2),
Z,  - 1 - P,/PO  stays constant. However, P,/TO  < 1
is generally valid for any optimized liner design;
therefore Z,  is in fact approximately constant.

Next we require that the scaled collision time
defined by rc  = wt, must also stay constant. This
is equivalent to the condition that the kinetic
energy for the liner at collision remains a constant
fraction of the total driving energy. While we are
unable to prove rigorously that this condition
ensures the scaled liner parameters to remain
optimal, physically it seems very reasonable. More
importantly, its validity is justified a posteriori by
comparing the scaling results with the some chosen
ones obtained from actual optimization. We note



that the solutions for Eq.(2) with different values of
Q do not intersect except at 7 = 0, so there is only
one solution which passes through I = Z, at r = rC
as required. Using Eq.(3), the unique value of CY
implies

mr= cc  1=w-=0 P * (16)
The Joule heating constraint given by Eq. (15) can
be written as

I,” 7.2Jm=w 0 F=(+r  = P(Te, m), (17)

when we ignore the small amount of platinum
mass. Neglecting the weak m-dependence in p, we
get the scaling for the liner mass as

m  cc  Ipw-l?

From Eqs.(lG)  and (18) we obtain the scaling for
the liner radius as

7-0 DC  Iif2w-3i4. (19)

Finally, i(re)  is constant and using Eq.(4) we get

v, oc 11f2w1j4
P

for the collision velocity and

w-0

P o(  Ipw1/2 (21)

for the shock pressure. As mentioned earlier, we
have mu:  oc Ii to verify that the liner kinetic
energy at collision is indeed a constant fraction of
the total driving energy.

In applying these scaling relations, we can
always, if necessary, refine the result by making the
final correction due to the mild nonconstancy in j3
and minor deviation from strict scaling in either
current or collision radius.

VII. Megabar Liners for Pegasus and
Procyon

Our composite liner design has been adopted in
the upcoming megabar liner experiments at both
Pegasus and Procyon. The optimized liner to be
fielded at Pegasus consists of 8 g of aluminum and
1 g of platinum, and it has an inner radius of 3 cm
and a length of 2 cm. The liner design is based on
the target radius set at 1 cm, using the maximum
driving current as shown in Fig. 1. Notice that the
current is well represented by a sine curve up to
the collision time at 8.8 ps.  From the 1-D
simulation we expect a peak shock about 8 Mbar
on a platinum target, In Fig. 2 we display the liner
motion. The platinum layer is too thin to be
resolved in the plot, so it merges with the inner

Figure 1. Implosion current for Pegasus megabar
liner experiment.

radius of the aluminum layer as a single curve in
the plot.

In Fig. 3 we show the velocity of the inner
liner surface. The collision velocity is 8 mm/ps.

The temperature histories for the two liner
layers are shown in Fig. 4. The dashed and solid
(dotted and dot-dash) curves represent,
respectively, the outer and inner surfaces of the
platinum (aluminum) layer. We note that the outer
aluminum surface begins to melt at 4 11s  and so
does the inner one about 7.5 ps,  but the platinum
layer remains way below its melting point before
collision.

Finally, in Fig. 5 we plot the shock pressure
profiles against the zone number at five different
times. The platinum target covers the zones from 3
to 22, platinum in the liner from 23 to 42 and Al
from 43 to 102. The solid curve is right after the
collision at t = 8.883 ps,  followed by the dotted and
dot-dash ones at 2 ns interval and then the short
and long dashed ones at one ns interval. The peak
pressure is around 8 Mb and lasts slightly less than
6 ns. This peak shock duration is limited by the
width of the Pt layer in the liner, which determines
how long it takes the rarefaction wave coming from
the Pt-Al interface to reach the collision interface.

Procyon is an explosive-driven pulsed power
facility at LANL; its current wave form is
approximately a step-function, with a sharp rise
time about 1 ,us and peak current of 23 MA. Based
on this driving current and the target radius set at
1 cm, the optimized composite liner consists of 12 g



Figure 2. Inner and outer liner radii versus time.

of Al and 1 g of Pt, and has a length of 2 cm and
an inner radius of 3.3 cm. According to our 1-D
simulation, this liner will generate a peak shock
about 20 Mbar on a Pt target.

I Conclusions

We have proposed the aluminum-platinum
composite liner design based on the physical
insights obtained from our study of the behavior of
the Hugoniots and electrical actions of various
materials. The composite liner enables us to
achieve a shock pressure several times over the best
performance attainable from the solid aluminum
liner. This improvement in peak shock pressures
results mainly from the high density of the
platinum layer, and to a less extent from the fact
that we can keep the platinum layer in solid phase
while driving the aluminum layer beyond its
melting point and thereby achieving an even higher
collision velocity than the pure aluminum liner. As
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